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ABSTRACT

We propose a solution to the minimization problem of multiple-valued pro-

grammable logic arrays (PLA) that uses simulated annealing. The algorithm

accepts a sum-of-products expression, divides and recombines the product terms,

gradually progressing toward a minimal solution. The input expression can be

user-specified or one produced by another heuristic. The process is termed
'simulated annealing' because it has an analog in the statistical mechanical

model of annealing in solids. That is, the slow cooling of certain solids results

in a state of low energy, a crystalline state rather than an amorphous state that
results fr'om fast cooling. In a PLA, the crystalline state is analogous to a reali-
zation with a small number of product terms.

Unlike recently studied minimization techniques (which are classified as

direct-cover methods), our technique manipulates product ternis directly, break-

ing them up and joining them in different ways while reducing the total number

of product terms. We show two mechanisms for recombining product terms and

compare the results with presently known heuristics. Specifically, we compare
both the number of product terms and the speed of execution. A unique feature

of simulated annealing is that its execution time is controllable, allowing one to

tradeoff time for minimalit'. It has been incorporated in the HAMLET PLA

minimization tool.
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I. INTRODUCTION

The only known algorithm for finding a minimal sum-of-products expression is exhaus-
tive search. However, excessive computation time makes this approach impractical. For

example, in a comparison of minimization algorithms on simple expressions [11], three days

of computation time were required to produce minimal expressions by exhaustive search,

while only three seconds were required for heuristic algorithms to produce near minimal

expressions.

Sum-of-products expressions are interesting because of the ease with which they can be
implemented by programmable logic arrays (PLA's). Implementation by PLA is easier than
by random logic because the circuit designer needs only provide a design for the row-column
intersection. This design appears throughout the PLA, where each occurrence is programmed

by the user. Recent progress in the implementation of multiple-valued PLA's has occurred in

CCD [5]. Implementations have been proposed for current-mode CMOS [151.

Because of the computational complexity associated with minimal sum-of-products solu-

tions, there is considerable interest in heuristics. At least four are known: Pomper and

Armstrong [7]. Besslich [1], Dueck and Miller [3], and Yang and Wang [14]. All use the
direct cover method; that is, first a minterm is selected and then an implicant is chosen that
covers the minterm. This process is repeated until the given expression is covered. Using

search in conjunction with the direct cover method [15], improves the realizations but
increases the computation time. The increased computation time has inspired research into

parallel minimization algorithms 112, 13].

We propose an alternative to the direct cover method. Instead of creating implicants, our

algorithm manipulates existing implicants. That is, implicants are combined, reshaped, or

divided. Manipulation of implicants is not new; it is used in binary minimization [2], and was
proposed for multiple-valued sum-of-products expressions [8]. What is new is the means of

manipulation. We do it nondeterministically. That is, randomly chosen implicants are ran-

domly combined, reshaped, or divided. The number of implicants in a cover of an expression
increases when an implicant is divided and during certain reshapings. However, this allows

one to go from a false minimum to a true minimum. The algorithm is essentially a series of
transitions from solution to solution in the solution space. As time goes on, the probability

decreases that a divide or reshape that increases the number of product terms is performed. In

so doing, the transitions among solutions become gradually biased towards solutions with

fewer product terms.

The process suggested above is similar to the slow cooling of metals or glass, which

allows the "melt" to reach a low energy state, a crystalline state. This is termed annealing,

and the corresponding optimization method is called simulated annealing. Slow cooling is

essential to the achievement of a minimal solution. On the contrary, in both the physical
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system and the optimization model, rapid cooling or quenching yields nonminimal results.

With sufficiently slow cooling, simulated annealing can provide practical solutions to many

optimization problems [6]. It has the further advantage that if c'-rtain conditions hold [91, the

probability of achieving a global minimum approaches 1.0. This is unlike deterministic
heuristic algorithms, in which nonminimal solutions can occur; indeed, our experience [111 is

that it is easy to find expressions for which a given heuristic does not achieve the minimal

solution. The achievement of a global minimum with a probability that approaches 1.0 may
not be satisfactory if the probability is low after a reasonably long computation. However,

our experience suggests that improved results over all known heuristics are obtained with rea-

sonable computation times for large expressions.

The results of our research are reported in Sections IV and V. Section IV shows the

results of simulated annealing on a single expression. To illustrate this algorithm's ability to

solve large problems, we choose an expression with 200 minterms and a best known solution

of about 90 product terms. We show tradeoffs that can be made between computation time
and the optimality of the final result. Section V shows a comparison with other minimization
heuristics. The basis is a set of specially selected expressions and a set of randomly gen-

erated expressions. Again, we compare the number of product terms and computation time.

II. THE SUM-OF-PRODUCTS MINIMIZATION PROBLEM

An r-valued function, f(x 1 ,x 2 ,... , x,), takes on a value from (0, r.r- ), for each

assignment of values to the variables, which are also r -valued; i.e. x i E 10, 1, ...,r-I ). r, the

radix, is the number of logic values in the systen. Because of their widespread use, we

choose to represent a function in its sum-of-products form. Because the truncated sum is so

easily implemented in multiple-valued PLA's, we choose to use it. A product term or irnpli-
cant is expressed as

a, b,1 a b, .. a. b,1
c X 1  x 2  1Xn,

where c r (1,2 ... , r-1 ), is a nonzero constant, where the literal function.
a ba'xi = r -1 if ai !< x i . bi ,

= 0 otherwise.

and where concatenation is the min function; i.e. x y = min (x, v ). Since the literal function
a,b takes on only values 0 and r - 1, the product (min) of literals ((I) without c) is either 0

or r -1, while the complete term (with c) takes on values 0 and c. Indeed, (1) is c iff

a, _ x1 < b, for all i. For two variable functions, it is convenient to represent a product term
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as a rectangle of values of c extending from x, = aI to x1 = bl and from x 2 = a 2 to x 2 = b 2.

The sum-of-products expression for any function f(X 1 ,X 2, ... x,) is some number of

product terms summed together using the truncated sum operation, shown as a + on the left-
hand side of

a +b = min(r-l,a +b),

where the + on the right-hand side is ordinary addition with logic variables viewed as
integers. Thus, if this sum should exceed r - 1, the min operation will assign r - 1 to the
logic expression a + b.

Any function f (x 1,x 2, , ) can be represented in a sum-of-products form; for
example, each assignment of values to the variables that yields a nonzero value for
f(xlx 2 , ' • , Xn ) can be represented as a product term that is 0 for all other assignments of

values. Such a product term is called a minterm. Summing all minterms. using the truncated
sum operation, yields the function f (x 1,x2 . .. ,xn).

We view a minimal sum-of-products expression as being any expression with the minimal

number of product terms. While the problem of finding one sum-of-products expression for a
function is straightforward, as shown in the example immediately above, the problem of
finding a minimal expression is another matter altogether. The sum-of-products expression
minimi:arion problem is to find a sum-of-products expression with the fewest product terms
for a given function f(x 1 ,x,. .'' , x, ). As stated in the introduction, the only known algo-
rithm for solving this is exhaustive search.

Ill. SIMULATED ANNEALING

Simulated annealing has been introduced [61 as a means to solve large-scale optimization
problems. It is based on a principle in statistical mechanics, in which a low energy crystalline
state is achieved by first melting a substance and then slowly cooling it.

A. THE GENERAL PROCESS

A basic computation in simulated annealing is a move. A move is a transition from one
solution to another solution in the solution space. In the sum-of-products minimization prob-
lem, the solution space is the set of all sum-of-product expressions for some given function.
Associated with each solution is a cost. In the sum-of-products minimization problem, the
cost is the number of product terms. A move can either increase, decrease, and leave the cost
unchanged. Intuitively, one favors moves that decrease the cost, since this drives the system
to a minimal solution. However, in a solution space with false minima, the exclusive applica-
tion of cost-decreasing moves can produce nonoptimal solutions. Cost-increasing or hill-
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climbing moves are also needed if the system is to recover from a local minima.

In simulated annealing, prospective moves are chosen at random. If a move decreases the

cost, it is always accepted (taken). If it increases the cost, it is treated probabilistically. That
-AEik8 Tis, a cost-increasing move is accepted with probability P(AE) = e -  , where 4B is a

constant, the Boltzmann constant (which we choose as 1), T is the temperature, and AE is the

increase in cost as the result of making the move. When a cost-increasing move is rejected,

another prospective move is randomly chosen and the process repeated. Initially, a high tem-

perature is chosen, in which case P(AE) is high. Here, almost all moves are accepted,

regardless of whether they increase or decrease the cost. A system that is held in this state

for a sufficiently long time is considered to be melted. In the melted state, there is no pro-

gress toward a minimal solution; rather the system undergoes random changes and is typically

far from a minimal solution.

Once the system has persisted in this state, the temperature is reduced and the process

repeated. However, the probability of accepting a cost-increasing move is now slightly lower.
This process continues, as the decreasing temperature gradually decreases the probability of

accepting cost-increasing moves. The result is slow progress toward an optimal state. Even-

tually, the system reaches a point where there is no further improvement. The system is con-

sidered to be frozen.

The temperature reduction process is called the annealing schedule. It is critical to the

attainment of a global minimum. When the temperature is rapidly reduced, a process called

quenching, the result is often far from optimal. Therefore, a slow decline is preferred, even

though this requires more computation time. A typical annealing schedule, and one that we

use, is described by

T" = oX T._

where cc is between 0.80 and 0.99. Here, the temperature at each stage is a large (but con-

stant) fraction of its former value. Values of (x less than 0.80 are considered quenching.

The making of a move in the minimum sum-of-products minimization problem is a two-

step process. First, a pair of product terms is randomly chosen. Second, a test is applied to

determine if they are equivalent to a single product term. If so, they are replaced by the

equivalent product term. Otherwise, they are replaced by a set of two or more product terms.

We describe these two steps in the next sections.

B. CHOOSING A PAIR OF PRODUCT TERMS

For two completely separate product terms, there is no prospect of combining them, and

such product terms are not considered. The algorithm only considers adjacent product terms.

Two product terms are adjacent if and only if a minterm of one is either coincident or
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adjacent to a minterm of the other. For example, Fig. 1 below shows a function with four

pairs of adjacent product terms. 1-2, 3-4, 5-6, and 7-8. Two product terms combine if they
can be replaced by a single product term. For example, of the four adjacent product terms in
Fig. 1, three combine. The pair 3-4 combine to the single product term 3 (3 is said to absorb
4), 5-6 combine because these are equivalent to a single product term consisting of a pair of
(horizontal) 2's, and 7-8 combine because these are equivalent to a single product term con-

sisting of a pair of (vertical) 2's.

X 1 5
X 2 0 12 3

20 0000o- - -

2 0 0 0 7

3 4

Figure 1. Example of a Function to Be Minimized.

C. OPERATIONS ON A PAIR OF PRODUCT TERMS

We consider two moves, cut-and-combine and reshape. Both choose a pair of product

terms, as described above. While, both combine the pair in the same way, each executes the

replacement in different ways. Our motivation in investigating two types of moves is the

insight gained on how the efficiency of simulated annealing depends on the sophistication of

the move.

1. THE CUT-AND-COMBINE MOVE

In the cut-and-combine move, the two product terms are combined, if possible, as

explained above. However. if not, a cut is performed, as follows. One of the two products is
chosen randomly and with equal probability (0.50). If the chosen product term is a minterm

of value 1, the move is rejected and another pair of adjacent product terms is chosen. How-

ever, if the chosen product term is not a 1 minterm, it is divided. A division can occur along
the logic value, in which case, two product terms are formed each with the same literals as
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the original product terms, but with coefficients that sum to the coefficient of the original pro-

duct term. For example, in a 4-valued system, if a product term with coefficient 2 is cut, it is

replaced by two product terms each with coefficient 1. If the original product term coefficient

is r - 1, then the coefficients of the divided terms can be anything as long as their truncated

sum is r - 1. A product term divided in such a way is said to undergo a logical divide. For

example, in a 4-valued system, if a minterm with coefficient 3 is cut, it can be replaced by

two minterms each with coefficient 2. A product term can also be divided geometrically. In

this case, a variable value with a literal range of two or more is chosen and two product terms
with the coefficient of the original product terms but divided along that variable are chosen.

Of the ways to divide a product term, including all logical and all geometrical divides, one is

chosen with a probability that is equivalent to all others (i.e., uniform probability).

2. THE RESHAPE MOVE

The cut-and-combine move is basic. It provides a fundamental cost-increasing move, the

cut, where a single product term is converted into two product terms. It also provides a cost-

decreasing move, the combine, where two product terms are converted into a single product

term. The reshape move, like the cut-and-combine, operates on a randomly chosen pair of

product terms. Also like the cut-and-combine, it combines the two product terms if a com-

bine is possible. Howeve,, for noncombinable product terms, the reshape move proceeds

differently.

First, the consensus operation is applied. That is, if the two product terms overlap, the

consensus of the two product terms is a product term situated at the intersection of the two
terms with a coefficient that is the truncated sum of the coefficients of the two product terms.

If the two product terms do not overlap, then they must be strictly adjacent. In this case, the

consensus is a single product term that is a part of both terms with a coefficient that is the

minimum of the coefficient of the two product terms. The part of each product term that con-

tributes to the consensus of the two is the "face" of the intersection that extends along the
whole of the variable across which the two product terms are adjacent. Fig. 2 shows an

example of the two subcases of the consensus operation. The coasensus is indicated by the
hatched area. Fig. 2a shows the coisensus in the case of overlapping product terms, while

Fig. 2b shows the consensus in the case of disjoint product terms. For each of the two pro-

duct terms, the consensus is subtracted. Of what is left, there are several ways to divide the
remaining product terms. Fig. 2 shows one way. From the ways that result in the fewest pro-

duct terms, one is chosen randomly. Unlike the cut-and-combine move, the reshape move can

prodice three or more product terms from the original two. Indeed even two dhferent
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Figure 2. Example of the Consensus Operation.

product terms can result. An example of the latter occurs in the case of product term 2 in

Fig. I and product term I replaced by a I minterm. The application of the reshape move

yields a product term consisting of a vertical pair of I's plus a I minterm. In this example,
the consensus term is the vertical pair of I's, 1 ox 0 °x .

The reshape move suffers from a disadvantage. For example, in a 4-valued system, con-
sider a minimal sum-of-products expression consisting of two product terms with coefficient 2
in the form of a cross. At the intersection, the coefficient is 3. Given an initial solution con-
sisting of five disjoint parts of the cross, there is no path that will allow the reshape move to
achieve the minimal solution. That is, the reshape move, while able to form one half of the
cross in combination with combines, is unable to form the other half. The best solution is
with three implicants. Unlike the cut-and-combine move, the reshape move does not create
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product terms that oversum. In this example, as in others, this ability is necessary to achieve

a minimal solution.

IV. EXPERIMENTAL RESULTS OF SIMULATED ANNEALING

Unlike previous analyses, which considered expressions with few product terms, we con-
sider, in this section, an expression with significantly more product terms. Fig. 3 shows the

result of simulated annealing using the two types of moves, cut-and-combine (a) and reshape

(b) applied to a randomly chosen 4-variable 4-valued function with 200 minterms. Prior to
the annealing process, this function was minimized using the Dueck and Miller heuristic [3],
resulting in a solution of 96 product terms. In both graphs, the number of product terms is
plotted horizontally with larger numbers to the right. The temperature is plotted in the axis

perpendicular to the page, with higher temperatures in the front. The number of times a visit

is made to a solution with some number of product terms is plotted along the vertical axis.
Vertical "slices" represent a histogram of the number of times the system is in a solution with

the corresponding number of product terms specified along the horizontal axis. Each slice

represents one temperature. The slice in the very front represents the highest and starting
temperature. It shows how melting takes place. For this temperature, moves transform the

initial 96 product term solution into solutions with approximately 275 product terms. The
progression goes from left to right, along the front edge of the diagram. Melting occurs

quickly; that is. the progression toward solutions with more product terms is seen as a minor
vertical deviation until the melted state. This is because, initially, the majority of adjacent

pairs of product terms cannot combine. As a result, most moves in the beginning are cost-
increasing moves. There is a steady progression to solutions with more product terms, and so

solutions with few product terms are visited infrequently. The vertical deviation for such
numbers is thus small. However, as the number of solutions increases, more pairs can com-

bine. and, thus, there are more cost-decreasing moves. The mix of cost-increasing and cost-
decreasing moves becomes balanced. As a result, visits to states with the same number of
product terms become more frequent, and there is a corresponding larger vertical deviation.

At the temperature just below the melted state, almost all of the solutions have nearly the

same number of product terms, and the vertical deviation is larger than at the initial tempera-

ture.

It is interesting that the total number of product terms in the melted state is greater than

the number of minterms. In the cut-and-combine move, there are solutions in the melted state

that have approximately 275 product terms. This exceeds the 200 nonzero minterms in the

initial specification of the expression because of a property of the cut-and-combine move:

Given a product term, it is possible to cut it into two product terms identical to the initial pro-
duct term except that the coefficients of the latter sum to the coefficient of the former.
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3, versus only one way to form the sum of 2). A similar phenomenon occurs with the

reshape move. For example. consider a two-variable 4-valued function consisting two 3's at

the opposite comers of a 2 by 3 rectangle with a pair of adjacent 2's in between. This func-

tion can yield five product terms by a sequence of reshape moves starting from four minterms.

That is, starting with three product terms, two 3 minterms and the pair of 2's, there is a

sequence of reshape moves that will produce a five product term solution where each 3 min-

term is replaced by a 2 and a 1 minterm.

Once the melted state has been reached, there is a gradual trend toward fewer product

terms as the temperature decreases. The temperature axis is logarithmic. That is, every

equally spaced temperature slice represents some fraction a of the slice closer to the front. In

the case of the cut-and-combine move, a is 0.99, and in the case of the reshape, t is 0.93.

The slow migration towards solutions with fewer product terms is evident. As the tempera-
ture decreases (moving toward the origin), there is a gradual shift to solutions with fewer pro-

duct terms, until eventually all transitions are among solutions with very few product terms.

In the case of cut-and-combine, a solution of 87 product terms is achieved, while in the case

of the reshape. a solution of 84 product terms is achieved. It is interesting that cut-and-

combine with a slower rate of temperature decline produced a solution with more product

terms than the reshape. The values for a were chosen carefully to provide good solutions

with reasonable execution times.

The cut-and-combine requires a total of 91.4 minutes of computation time were required
on a Solboume Series 4 workstation (equivalent to a Sun 110) for the cut-and-combine, while

3.98 minutes were required for the reshape. This illustrates the relation between the annealing
schedule and the computation time. With ox = 0.99. the cut-and-combine exhibits a slower

rate of decline in temperature than the reshape move. where ot = 0.93. Compensating for the

large number of temperatures in the cut-and-combine move is the additional time required by

the reshape to manipulate the product terms.

A more complete understanding of simulated annealing is gained by plotting the solutions

against various parameters. Fig. 4 shows how the solutions depend on different choices for

the starting temperature, the cooling rate, and the number of moves made at each temperature.

Fig. 4a shows these parameters for the case of the cut-and-combine move, while Fig. 4b

shows the parameters for the reshape move.

This data shows an interesting independene on initial temperature. That is, the number

of product terms in the final solution tends to be approximately independent on the initial tem-

perature. For each starting temperature, there is a clear period of meiiing, in which the initial

Q 6 product term solution increases rapidly at the first few temperatures. That is, in these

diagrams the heuristic begins at a high temperature and a reasonably small number of product
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Figure 4. The Number of Product Terms As a Function of Starting Temperature.
Cooling Rate, and Number of Moves Made at Each Temperature.
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terms. There is a rapid increase in the number of product terms as the temperature decreases,

followed by a gradual decrease in the number of product terms going towards the left. This

course, as shown in Fig. 4, is relatively unaffected by the starting temperature. This observa-

tion applies to large start temperatures. For very low start temperatures, there is a depen-

dence, indeed a degradation in the final solution when the start temperature is low.

A similar statement is not true of the effect of cooling rate. For both the cut-and-

combine and reshape move, the quality of the final solution is dependent on the cooling rate.

The fastest cooling rate, corresponding to ac = 0.5, results in solutions that are far from

optimal. This is quenching. The plots also show a dependence on the number of moves at

each temperature, which is analogous to the time spent at each temperature. Especially, when

the maxinmum number of moves is restricted to a low of 200, there is a clear degradation in

the algorithn's performance.

V. COMPARISON OF SIMULATED ANNEALING WITH OTHER
MINIMIZATION ALGORITHMS

To achieve a fair comparison of simulated annealing with other heuristic minimization

methods, we consider two types of test functions. The first consists of individual functions

selected for their unique characteristics. The second consists of functions randomly generated

by the HAMLET CAD tool.

In the first set, there are three functions. Testl is a randomly chosen 4-valued 3-variable

function with 50 minterms. An exhaustive search in HAMLET shows that the exact minimal

solution contained 21 product terms. The Dueck and Miller heuristic [3] in HAMLET results

in a solution of 24 product terms. This is the form put into the simulated annealing program.

After 104.4 minutes of computation time on a Solboume Series 4 Workstation, cut-and-

combine produced a (minimal) solution of 21 product terms, while reshape produced a solu-

tion of 21 product terms, but within 2.5 minutes. Test2 is a 4-valued 4-variable symmetric

function with 176 minterms and a minimal solution of 6 product terms. The minimal sum-

of-products expression for this is

l 2X 1 2 .V 10 V I0 x2 + I IX3 O 3 2 3 P3 + I IX 3 V .V3 x 3x +
1 2 3 1 ,2 3O12., - 3 ~ % I.' r + OX 1 2+, 3 . +1

lO 2 2x3 4 + l 2  3 4  l Ax ° 3 2 t

Its special characteristic is that it is difficult to minimize by cut-and-combine. That is, the

minimal solution exists among many nonminimal solutions that are easily produced by the

random cutting of product terms. The random nature of cut-and-combine makes it difficult to

converge to the minimal solution from among the many nonminimal solutions. Reshape, on

the other hand, tends to maintain group integrity, and will not introduce miscellaneous logical

cuts that tend to move away from the minimal solution. Test3 is a 4-valued 2-variable
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function that was chosen because reshape does not find the minimal solution for it. Test3 is

shown in Fig. 5. This function requires oversumming where the truncated sum indeed

X X

x2 X 0 1 2 3 . 0 1 2 3

02 0 0 0 02 - 0

10 202 1 2

2 0 22 0

3 0 0 2 0 3 00 0

Figure 5. Test3, a Test Function.

truncates. Because of this, reshape does not achieve a minimal solution. It is relatively sim-
ple. and so cut-and-combine finds the solution easily. Table I shows the results of various

algorithms on the three test functions. Our expectation of the relative merits of cut-and-

Heuristic Test] Test2 Test3

in out time in out time in out time

Cut-&-combine 24 21 6264 14 19 2125.4 5 4 207*

Reshape 24 21 147 14 7 71.0 5 5 4.6

Dueck & Miller 24 24 0.9 14 6 5.7 5 5 0.03

Pomper & Armstrong 24 24 0.4 14 10 3.0 5 5 0.01

Yang & Wang 24 22 8.6 14 10 9.3 5 4 0.12

*This is the total time. The minimal solution was first found in 4.2 secs..

Table 1. Number of Product Terms and Computation Time For Three Test Functions

As Produced by Five Heuristics.

combine and reshape on Test2 and Test3 are borne out. Interestingly, only the Dueck and

Miller heuristic found the minimal solution on Test2, while cut-and-combine produced a
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solution quite far from optimal. For Test3, only the cut-and-combine and the heuristic by

Yang and Wang [11] achieved the minimal solution.

The second group of tests consists of randomly chosen functions. For this test case, nine

ensembles of ten functions each were chosen. Each ensemble consists of 4-valued 4-variable
functions with the same number of minterms, a value that ranged from 50 to 250. Fig. 6

shows the results. Cut-and-combine performed best in ensembles having fewer minterms,

Heuristic Comparson
Average Number of Product Terms in Minimized Output

100-

90.

0 80 .
Cut & CombineU 70--

t 60- Reshape

P 50- VYang & Wang

U 40-U Dueck & Millert
30 1 Pomper & Armstrong

20

10
01

50 75 100125150175200225250

Number of Minterms Input

Figure 6. Comparison of Number of Product Terms Produced by Various Heuristics

Versus the Number of Minterms Over Random Functions.

while reshape had the best performance on the remaining functions. Fig. 7 shows the execu-

tion time of the various heuristics. This shows that the increased "intelligence" exhibited by

reshape results in an improved solution, as well as reduced computation time. Both simulated

annealing heuristics, on the average, outperformed the other heuristics. This improved
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Heuristic Comparison
Cpu Time Required to Minimize One Expression

800

700-
S 600- ..7 ., 'S... Cut & Combine*
e500, Reshape
C

400- 7Yang & Wang

n300 . Dueck & Miller
S 200 1 Pomper & Armstrong

100- *Time scaled down by
a factor of ten.

0!
50 75 100125150175200225250
Number of Minterms Input

Figure 7. Comparison of Execution Time Required by the Various Heuristics
Versus the Number of Minterms Over Random Functions.

performance is not without a price. Computation times are higher.

VI. CONCLUDING REMARKS

This investigation of the use of simulated annealing in finding minimal sum-of-products
expressions has been encouraging. First, the time of computation is easily controlled; one can
choose a slow annealing schedule, and, in so doing, achieve a solution that tends to be closer

to optimum, or a fast schedule with less likelihood of achieving the optimum. Second, simu-
lated annealing has general applicability, and there is the prospect of applying it to further
problems in multiple-valued logic circuit design, e.g. layout and routing. Indeed, it may be
represent the means to go on to more complex structures than PLA's, thereby achieving even
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more compact circuits.

We have shown two algorithms, the simple cut-and-combine and the reshape. The latter

requires more computation time doing an individual move, but yields good solutions with less

computation time overall than the cut-and-combine. However, for expressions representing

few minterms, the cut-and-combine move is superior. Both represent improvements to all

known heuristics.
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APPENDIX A: FORMAL SPECIFICATION OF THE PROGRAM TO
SOLVE THE MINIMAL SUM-OF-PRODUCTS PROBLEM BY
SIMULATED ANNEALING

The following is a formal description of the application of simulated annealing to the
minimization of a multiple-valued sum-of-products expression. The input is a set of product

terms, ProductTermSet, that sum to the given function. The output is a minimized set of

product terms that is returned as ProductTermSet.

algorithm SimulatedAnnealing(ProductTermSet);

/* Minimize a multiple-valued expression, ProductTermSet, by simulated annealing with

the following global constraints. Default values are shown in parentheses. All such

values can be overridden by the user. Typical ranges are indicated by brackets.

InitialTemp - T0 , temperature at which simulated annealing begins (0.7) [0.5 -

10.01.

LowestTemp - The lowest temperature below which simulated annealing is no

longer applied (0.01).

MoveType - Type of move taken at each attempted move (Cut-and-Combine)

[Cut-and-Combine or Reshape!.

MaxMoves - Maximum allowed number of moves completed at each temperature

(ICut-and-Combine: 13 x number of minterms. Reshape: 4 x number of min-

terms.).
MaxAttemptedMoves - Largest number of attempted moves made before the

current temperature is abandoned (Cut-and-Combine: 210 x MaxMoves.

Reshape: 25 x MaxMoves.).
MaxFrozen - Longest sequence of temperatures at which the number of

,ittempted moves is MaxAttemptedMoves (4) [2-10]. At this temperature,

many attempted moves are needed to achieve completed moves, and the

solution is considered to be frozen. The simulated annealing is stopped.

since little progress is achieved with continued computational effort.
CooiRate - a, the factor used to determine the next temperature, i.e.

T, = ctT,, 1 (Cut-and-Combine: 0.99. Reshape: 0.93.). [0.50 - 0.99].
*/

BestProductTermSet *- ProductTermSet;

CurrTemp <- InitialTemp;

Frozen <- 0;
while (Frozen < MaxFrozen) and (CurrTemp > LowestTemp) do;

begin

AttemptedMoves +- 0;
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Moves <-- 0;
while (Moves !S MaxMoves) and (Attempted~ioves ! MaxAttemptedMoves)

and (there are adjacent pairs in ProductTermSet) do;
begin

ChooseAdjacentProductTen-ms( ProductTermSet, PT 1, PT2);
AttemptaMove(PTIl, PT2, Curremp, MoveType, PTFlplusPT2, MoveMade);
AttemptedMoves <-- At-temptedMoves + 1;
if (MoveMade) then

Moves <-- Moves + 1;

ProductTermSet <-- ProductTermiSet - PT17 - PT2 (_) PTIplusPT2;
if (ProductTermSet I <I BestProductTermSet I)then

BestroduetTerruSet <-- ProductTermSet;
end,

end-,
end;

if (AttemptedMoves > MaxAttemptedMoves) then Frozen <-- Frozen + 1;
else Frozen +-- 0;
Curremp <-- CoolRate x Curremp;
end-,

end,
Productei-iSet <-- BestProductTerrnSet;-

stop;

procedure AttemptaMove(PTI, PT2, Curremp, MoveType, PT 1plusPT2, Nlove~lade);

/* Attempt a move at the Curremp
PTFlplusPT2 - Set of product terms equivalent to PTl + P172 (If a combine is

possible, for example, PTlplusPT2 contains the single equivalent product
term).

MoveMade - Indicates whether or not an attempted move was completed (true or
false).

MoveMade +- false;
if (PTI and PT2 combine) then

Combine(PTI, P172, PTlplusPT2);
MoveMade +- true;

else if (MoveType = Reshape) then
Reshape (Curremp, PT 1, PT2. PT 1plusPT2, MoveMade);

else if (MoveType = Cut-and-Combine) then
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Cut(CurrTemp, PTl, PT12, PTlusPT2, MoveMade),
end;

return;

procedure Combie(PTI., PT2, PTlplusPT2);

/* Combine Ff1 and PT2 into a single product term.

if (FF2 absorbs PTI) then
P'FlplusP'T2 <-- FF2;

else if (PTI absorbs PT'2) then
PTlplusPT2 <- PTl;

else if (FF1 and PT2 overlap) then
PTlplusPT2 is assigned the same literal structure as PTL and PT2;

Coef(PTlplusPT2) <-- Coef(PTI) + Coef(PT2;
else if (PTl and PT2 are disjoint) then

P'FlplusPT2 is assigned the same literal structure as PTI and PT2 except for the
variable over which they are disjoint;

literal(PTlplusPT2) <-- literalhPTI) U~ literal(PT2). where the literal coincides

with the variable over which PT1 and FF2 are disjoint;
end,

return-,

procedure Reshape(CurrTemp, FF1, FF2, PTlplusFF2, MoveMade);

/* Attempt to reshape the product termns.
Random() - Produces a random number between 0.0 and 1.0.
RandomSharp(PT, PTConsensus, P) - A routine that accepts two product

terms, FT and PTConsensus, where Coef(PT) : CoefPTFConsensus)
returns a set of product terms, P. P consists of a minimal set of product
termns that covers all minterms in PT r) FFConsensus each having a
coefficient of value, Coef(FF) - Coef(FFTConsensus), (if that value is
greater than zero) and all minterms in FIT but not in FFConsensus each
having a coefficient of value Coef(FFT). From all choices of a minimal
set, one is chosen randomly and with uniform probability.

MoveMade +- false;
if (Random() e Resu1peCost(PT T 2 cL"rr7emP ) then return;
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else if (PTI overlaps PT2) then
PTConsensus (-- A product term consisting of mintermns common to PTI and PT2

with a coefficient that is the (truncated) sum of the coefficients of PTl and
PT2;

else if (PTI and PT2 are adjacent but have no commron minterms) then
PTConsensus <-- A product term consisting of minterms included in the face of

the adjacency and extending in the variable perpendicular to the adjacency
with a coefficient that is the minimum of the coefficients of 11 and PT2;

end,
RandornSharp(PTI, PTConsensus, P1);
RandomSharpPT2-. PTConsensus, P2);
PTFlplusPT2 <-- PTConsensus U~ PI U~ P2-;
Move~lade <-- true;

return-,

procedure Cut(CurrTemp. PTL, PT2. PT~plusPT2'. Move~lade);

/* Attempt to divide one of the product terms. ~

MoveMade -. false:

if (Randoi() e- -ICurrTemp ) then return;
else if (Random() < 0.5) then

RandormDivide(PT 1. PTDivided, MoveMade);
PTlplusPT2 = PTDivided u~, PT2;

else R andomDivide(PT2, PTDivided, MoveMade);
PTlplusPT2"' = PTl ki PTDivided,-

end,
return;,

procedure RandomDiv ide(PT, PTDivided, MoveMade);

/* A function that accepts a product term, PT, and creates two product terms, PTA and
PTFB, such that PTDivided =(PTA, PTBJ. Let

a1t22 a b 2... b

where C E (12..r1,is a nonzero constant and a :5b,

T'his routine computes the number of ways a product term can be cut and chooses
one randomrly with uniform probability. It returns with MoveMade set to true.
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When PT is a n-Linterm with coefficient 1, there is no way to cut it, arnd a return is
executed with MoveMade set to false.

MoveMade <-- false;

if (c < r - 1) then LogicalCuts <--

else if (c = r - 1) then LogicalCuts r-[~ [r;] I

end;
n

GeometricalCuts <-- I a, - i
i=1

TotalCuts <- LogicalCuts + Geometric alCuts;
if (TotalCuts = 0) then return-,

else if (Random() < LogicalCuts/TotalCuts) then
Perform the corresponding logical cut, creating PTA and PT7B;

else
Performn the correspondino' ometrical cut, creating PTA and PTB;

end;
PTDIvided <-- (PTA, PTB;
Move~lade <-- true;

return.
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APPENDIX B: VERIFICATION OF THE PROGRAM

Because the simulated annealing program is probabilistic, it is difficult to verify its

correctness. However, for small problems, we can derive the probability that the pcogram will

achieve various solutions. Then, if the program is run for a sufficiently long time, we can

derive experimental values for the expected values of the probability that the program has
achieved a specific solution. Comparing calculated values with experimental values can pro-
vide a sense for the program's correctness.

Simulated annealing is a Markov chain, where states in the chain correspond to some

configuration of product terms, i.e. a solution. As an example, consider the two product

terms, 1 and 2, in Fig. 1. Viewing these as a single expression, there are only six product

terms that cover this. However, there are only five ways these can be combined to form the

function. These are shown as five circles in Fig. 8 below. For example, the circle shown on
the left. State 1, corresponds to the unique minimal sum-of-products expression for this func-

3

Figure 8. State Transitions in the Markov Chain Model of Simulated Annealing.

tion. It has two product terms. The circle on the right corresponds to the sum-of-products

expression with the largest number of product terms. It has four product terms. Arcs
between states correspond to transition probabilities in the melted state, when cost-increasing

moves are accepted with probability 1.0. For example, in State 3, there are two possible

moves, one to State 1 and one to State 2. The configuration of product terms corresponding

to State l consists of two single 1 product terms which sum to form the 2 of the function and

a pair of adjacent 1 s. There are three pairs of product terms, all of which are chosen with
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probability 1* If the pair of single 1's are chosen, they combine into a single 2, and there is
3

a transition to State 1. If either of the other two pairs are chosen, a combination is not possi-

ble and one of the implicants involved is chosen with probability 0.5. If the chosen implicant

is the pair of 1 's (in each case), it is divided, and there is a transition to State 2. However, if

the single I is chosen, then the choice of pairs is repeated. The probability that the move is
I

to State 1 is I - 2' while the probability that the
I + 2 1 1

21 13 3 2

move is to State 2 is 3 2 12 These probabilities are shown as weights to the arcs
1 1 1 2- +2- --

2 3 2

from State 3. The probabilities of other state transitions are shown.

It is convenient to represent the state transition diagram of Fig. 8 as a matrix, the transi-

tion matrix. This is a complete representation of the probabilities of transition among the

various states. Specifically, element pi, is the probability of going from State i to State j.

Because the transition probabiities from each state must sum to 1.0. Xpni = 1.0. For the

state transitions shown in Fig. 8, we have the transition matrix S, as follows:

0 0 0

0 0
4 4 2

S =0 0 02 2

33

0 1 000

If P =[po,p1, , is a row matrix, where pi is the probability of State i initially,

then P S represents the probabilities after one transition. Sunilarly, P S' represents the pro-

babilities after k transitions. For example, S 20 is

0.412 0.412 0 0 0
0.588 0.588 0 0 0

S 20 = 0 0 0.353 0.353 0.353

0 0 0.353 0.353 0.353

0 0 0.294 0.294 0.294

The form of this matrix shows a consistency in the final state. For example, if the initial state

is either 1 or 2 (either PI = 1.0 or P2 = 1.0), after 20 transitions. the probability of State 1 or

2 is 0.412 or 0.588, respectively. If the initial state is 3, 4, or 5 (either P3 = 1.0, P 4 = 1.0 or

P 4 = 1.0), then the probability of States 3, 4, or 5 is 0.353, 0.353, or 0.294, respectively. This

independence of start state is common in Markov chains. We can apply a formal analysis.

By applying a standard matrix transformation [4, pp. 127.132], S can be expressed as

24



S = L-'AL,

where the rows of L are the left eigenvectors Xx2,. ,x,, of S, corresponding to eigen-
values X1, X2, " ",, respectively, and A is a diagonal matrix with entries

X1, X2, " , X,. Further, Sk can be expressed as

m
Sk = L-'AL = y'iXi

i=1

where x is the i-th row of L and y' is the i-th column of L - . Using MACSYMA, an
algebraic and symbolic manipulation package, we find the cigenvalues for S to be

l- " , 2, X3= - 1, X'4 = 1, and X5=0. Let B -Ak mean ,1-ulr b/a = 1,
12 1 2 n -+

for every element b in square matrix B and for the corresponding element a in square matrix

A k. Then, we can write

Sk - (_1)k Y, 3 X3 + y' 4 x 4.

y'3, x 3- Y 4, and x 4 can be calculated from the eigenvectors of S, as produced by
MACSYMIA.. and we have, for even k.

14 34 0 0 034 34

14 14 0 0 0
34 34

S k  0 o 12 12 1 1
34 34 34

0 o 12 12 10
34 -M 34

o o 12 12 10
34 34 34

while for odd k.

0 0 1 12 10
34 34 34

0 0 12 1 10
34 34 34

Sk 14 14 0 0 0
34 34
14 14 0 0 o
34 34
14 14 o o o
3-4 4

Recognizing that for an arbitrary k, the probability that it is even or odd is 0.5, we can obtain

the probabilities of specific states as follows:
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Probability
State of

the State

1 0.206

2 0.294

3 0.176

4 0.176

5 0.147

Table II. Probability of Various States After Many Transitions.

This shows that, in the melted state, where moves that increase the number of product terms
are all accepted, the probability of the minimal state, State 1, after many transitions is 20.6%.
The most likely state, however, corresponds to the largest number of product terms. It is
interesting that the "false minimum" state, State 5, has a lower probability than the true

minimum.

This analysis corresponds to the highest temperature, where all moves are accepted. At
lower temperatures, moves that increase the cost by AE are accepted with probability

P(AE) = e - .EjkT In our case, there is only one positive value of AE, 1, and we denote

the probability of accepting such a move as p. The calculation of the probabilities of transi-
tion from the various states is straightforward. The corresponding transition matrix is

0 0 0
2 2

0 0 1 1 1
-4 -

2 1

_ 3 0 0 0
2 1+

3 3  00

0 1 000

In an analysis similar to that performed above on the melted state, the probabilities that the

system is in a specific state, can be calculated to determine their dependence on p (by com-
puting S20). The following table shows the results. It can be seen that, as p decreases, the

probability of State I approaches 0.5, while the probability of State 5 decreases to 0.0.

Because a transition is required after each state, the probability of any one state cannot exceed
0.5. Thus, the probability of State I approaches the maximum value as p approaches 0.0.
This also shows that the probability of the false minimum state, State 5, approaches 0.0 as p
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decreases to 0.0.

p Probability of State

1 2 3 4 5

1.0 0.206(0.206) 0.294(0.294) 0.176(0.175) 0.176(0.176) 0.147(0.148)

0.5 0.289(0.294) 0.211(0.206) 0.197(0.198) 0.197(0.200) 0.105(0.102)

0.25 0.365(0.364) 0.135(0.136) 0.217(0.217) 0.217(0.215) 0.067(0.068)

0.125 0.422(0.421) 0.078(0.079) 0,230(0.228) 0.230(0.232) 0.039(0.040)

0.0625 0.457(0.456) 0.043(0.044) 0.239(0.241) 0.239(0.237) 0.021(0.022)

0.03125 0.478(0.477) 0.022(0.023) 0.244(0.245) 0.244(0.244) 0.012(0.011)

0.015625 0.489(0.489) 0.011(0.011) 0.247(0.245) 0.247(0.249) 0.005(0.005)

0.0078125 0.494(0.495) 0.006(0.004) 0.249(0.248) 0.249(0.250) 0.003(0.001)

Table I1. Probability of Various States After Many Transitions

as a Function of p, the Probability of Accepting a Cost-Increasing Move.

Shown in parenthesis are experimentally derived values for the probabilities of the vari-

ous states. These were obtained by running the simulated annealing with the temperatures

shown for 100,000 moves. As can be seen, the experimental values match closely the derived
values. That is. in the worst case, the difference between the experimental value and the cal-

culated value is 0.5%, for State 2 with p = 0.5.
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